
Secure heterodyne-based
QRNG at 17 Gbps

Marco Avesani1 Davide G. Marangon1*, Giuseppe Vallone1,2, 
Paolo Villoresi1,2

QCrypt 2018, Shanghai 

arXiv:1801.04139

1 Department of Information Engineering, Università degli Studi di Padova
2 Istituto di Fotonica e Nanotecnologie, CNR, Padova
* Now at Toshiba CRL



Gbps

bps

2

Tradeoffs in QRNG

Security / Paranoia

Sp
ee

d 
Based on N.Brunner, QCrypt2015



TrustedGbps

bps

2

Tradeoffs in QRNG

Security / Paranoia

Sp
ee

d 

LASER UMZI

PD

• Reach up to 68 Gbps
• Need to trust every element
• Side-information leakage if 

deviation from the model  

[1] C. Abellán et al., Opt. Express, 22, 1645,( 2014 ).
[2] Y. Q. Nie et al., Rev. Sci. Instrum., 86, 6,( 2015.)
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• Reach up to 68 Gbps
• Need to trust every element
• Side-information leakage if 

deviation from the model  

• Security certified by nonlocality
• No assumptions: black box devices
• Complex and slow: 181 bps

[1][2] 

[3][4] 

[3] Y. Liu et al., arXiv:1807.09611v2, 2018.
[4] P. Bierhorst et al., Nature, 556,7700, (2018).

[1] C. Abellán et al., Opt. Express, 22, 1645,( 2014 ).
[2] Y. Q. Nie et al., Rev. Sci. Instrum., 86, 6,( 2015.)
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A good compromise?

EPRA B

Semi Device-Independent
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[5-8] 

Weaker assumptions

[5] T. Lunghi et al., Phys. Rev. Lett., 114,  150501, (2015).
[6] D. G. Marangon et al., Phys. Rev. Lett., 118, 060503, (2017).            
[7] J. B. Brask et al., Phys. Rev. Appl.,7, 54018, (2017).
[8] T. Van Himbeeck, et al., Quantum, 1, 33, (2017)
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Our goal!
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Source Device-Independent scenario: the protocol

• Eve has full control on the source: she and Alice can share any bipartite 

sates at each round
• Valid for any set of POVM implemented by Alice

• The POVM are trusted, but don’t need to be ideal

• The key element is the quantum conditional min-entropy, 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ :                       
it takes into account quantum side-information for a single-shot

• Use the Leftover Hashing Lemma to get the secure numbers [1]

[1] M. Tomamichel, IEEE Trans. Inf. Theory, 57, (2011)
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Randomness estimation ( for CV systems )

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ = − log2(𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔(𝑋𝑋|ℰ))

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 ℰ = max
{𝑝𝑝 𝛽𝛽 ,𝜏𝜏𝛽𝛽}

�𝑝𝑝(𝛽𝛽) max
𝑥𝑥

Tr Π𝐴𝐴𝑥𝑥𝜏𝜏𝛽𝛽 𝑑𝑑𝛽𝛽 𝜌𝜌𝐴𝐴 = �𝑝𝑝 𝛽𝛽 𝜏𝜏𝛽𝛽𝑑𝑑𝛽𝛽

The amount of private randomness is given by:

s.t.

Represents Eve’s probability of correctly 
guessing Alice’s output

All possible decompositions of Alice state
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The amount of private randomness is given by:

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 ℰ ≤ max
𝑝𝑝 𝛽𝛽 ,𝜏𝜏𝛽𝛽

�𝑝𝑝 𝛽𝛽 max
𝑥𝑥,𝜏𝜏𝑤𝑤∈ℋ𝐴𝐴

Tr Π𝐴𝐴𝑥𝑥𝜏𝜏𝑤𝑤 𝑑𝑑𝛽𝛽 ≤ max
𝑥𝑥,𝜏𝜏𝑤𝑤∈ℋ𝐴𝐴

Tr Π𝐴𝐴𝑥𝑥𝜏𝜏𝑤𝑤

s.t.

Not useful for projective measurements, but for overcomplete POVM….

Represents Eve’s probability of correctly 
guessing Alice’s output

All possible decompositions of Alice state
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Randomness estimation for Heterodyne detection

Π =
1
𝜋𝜋

⟩|𝛼𝛼 ⟨𝛼𝛼|Heterodyne POVM =

Overcomplete set POVM, projection on coherent states



7

Randomness estimation for Heterodyne detection

Π =
1
𝜋𝜋

⟩|𝛼𝛼 ⟨𝛼𝛼|Heterodyne POVM =

𝑃𝑃

𝑄𝑄
Overcomplete set POVM, projection on coherent states

Eve’s state



7

Randomness estimation for Heterodyne detection

Π =
1
𝜋𝜋

⟩|𝛼𝛼 ⟨𝛼𝛼|Heterodyne POVM =

Overcomplete set POVM, projection on coherent states

Eve’s state

𝑃𝑃

𝑄𝑄

Projected state



7

Randomness estimation for Heterodyne detection

Π =
1
𝜋𝜋

⟩|𝛼𝛼 ⟨𝛼𝛼|Heterodyne POVM =

Overcomplete set POVM, projection on coherent states

Eve’s state

𝑃𝑃

𝑄𝑄

Projected state



7

Randomness estimation for Heterodyne detection

Π =
1
𝜋𝜋

⟩|𝛼𝛼 ⟨𝛼𝛼|Heterodyne POVM =

Overcomplete set POVM, projection on coherent states

Eve’s state

𝑃𝑃

𝑄𝑄

Projected state



7

Randomness estimation for Heterodyne detection

Π =
1
𝜋𝜋

⟩|𝛼𝛼 ⟨𝛼𝛼|Heterodyne POVM =

Overcomplete set POVM, projection on coherent states

Eve’s state

The overlap of the POVM introduces randomness!

𝑃𝑃

𝑄𝑄
Projected state



7

Randomness estimation for Heterodyne detection

Π =
1
𝜋𝜋

⟩|𝛼𝛼 ⟨𝛼𝛼|Heterodyne POVM =

Overcomplete set POVM, projection on coherent states

Eve’s state

The overlap of the POVM introduces randomness!

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 ℰ ≤ max
𝑥𝑥,𝜏𝜏𝑤𝑤∈ℋ𝐴𝐴

Tr Π𝐴𝐴𝑥𝑥𝜏𝜏𝑤𝑤 = max
𝛼𝛼,𝜏𝜏𝑤𝑤∈ℋ𝐴𝐴

1
𝜋𝜋 Tr ⟩|𝛼𝛼 ⟨𝛼𝛼|𝜏𝜏𝑤𝑤 = max

𝛼𝛼,𝜏𝜏𝑤𝑤∈ℋ𝐴𝐴
𝑄𝑄𝜏𝜏𝑤𝑤 𝛼𝛼 =

1
𝜋𝜋

𝑄𝑄𝜌𝜌 𝛼𝛼 Is the Husimi Q-Function and is always bounded 0 ≤ 𝑄𝑄𝜌𝜌 𝛼𝛼 ≤ 1
𝜋𝜋

[1]

𝑃𝑃

𝑄𝑄
Projected state

[1] U. Leonhardt, Measuring the Quantum State of Light 
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Randomness estimation for Heterodyne detection

Π =
1
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Is the Husimi Q-Function and is always bounded 0 ≤ 𝑄𝑄𝜌𝜌 𝛼𝛼 ≤ 1
𝜋𝜋

[1]

𝛿𝛿𝑃𝑃

𝛿𝛿𝑄𝑄

Taking into account finite measurement resolution in the phase space

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 ℰ ≤
𝛿𝛿𝑃𝑃 𝛿𝛿𝑄𝑄
𝜋𝜋

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ = log2
𝜋𝜋
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𝛼𝛼,𝜏𝜏𝑤𝑤∈ℋ𝐴𝐴

1
𝜋𝜋 Tr ⟩|𝛼𝛼 ⟨𝛼𝛼|𝜏𝜏𝑤𝑤 = max

𝛼𝛼,𝜏𝜏𝑤𝑤∈ℋ𝐴𝐴
𝑄𝑄𝜏𝜏𝑤𝑤 𝛼𝛼 =

1
𝜋𝜋

𝑃𝑃

𝑄𝑄

𝑄𝑄𝜌𝜌 𝛼𝛼

[1] U. Leonhardt, Measuring the Quantum State of Light 
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Key differences 

Source Device-Independent Typical Semi Device-Independent

• No input randomness required!
• Randomness doesn’t depend on the measured statistics. 

The structure of the POVM allows to bound the randomness a priori.
• Great simplification for real-time extractors
• Single-shot entropy measure + no estimations                       no finite size effects 

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ = log2
𝜋𝜋

𝛿𝛿𝑃𝑃 𝛿𝛿𝑄𝑄

[1] T. Lunghi et al., Phys. Rev. Lett., 114,  150501, (2015).

[1]
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The experimental implementation

• The source is untrusted: we use the simplest, the vacuum ⟩|0
• The heterodyne detection (or double homodyne) samples the two 

quadratures using a reference Local Oscillator (LO): 1550 nm ECL laser
• The LO is measured in real-time to compensate for fluctuation
• For detection, two balanced InGaS detectors (1.6 GHz BW ) are
• The two quadrature RF signals are digitalized by an 10 bit 4Ghz Oscilloscope at 

10 Gsps in burst mode, then filtered
• Electronic noise is treated as noise on the source: not trusted
• Finally, a a Toeplitz Randomness Extractor calibrated on the min-entropy is

used to extract the secure numbers

𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ = log2
𝜋𝜋

𝛿𝛿𝑃𝑃 𝛿𝛿𝑄𝑄
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Results

Theory

Data

Secure generation rate:
Resolution: 10-bit 𝛿𝛿𝑄𝑄 = 14,05 ± 0,02 ⋅

10−3,𝛿𝛿𝑃𝑃 = 14,14 ± 0,02 ⋅ 10−3

Min-entropy: 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ ≥ 𝟏𝟏𝟏𝟏, 𝟗𝟗𝟗𝟗𝟗𝟗 bits per sample

Effective sampling rate: 1.25 𝐺𝐺𝐺𝐺𝑝𝑝𝐺𝐺

Secure rate: 𝑅𝑅 ≥ 1,25 ⋅ 109 ⋅ 𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ bits 𝑅𝑅 ≥ 17,42 Gbps 
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Conclusions & Outlook

Theory:
• We have proposed a new Source Device-Independent protocol valid for 

any Discrete and Continuous variable POVM
• The protocol doesn’t require any external randomness
• Security doesn’t depend on the measured data
• Non-asymptotic

Experiment:
• Simple experimental setup
• Used only commercial off-the-shelves components
• Performance are almost on par of the best Trusted QRNG

Outlook:
• Real-time filtering and extraction
• Weaken the assumptions on the measurements
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Thank you for the attention!

arXiv:1801.04139

Secure heterodyne-based quantum random number           
generator at 17 Gbps
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Calibration

Calibration is necessary to link the measured variances in Volts to the 
quantities in the phase space

𝜎𝜎𝑞𝑞2 =
𝜎𝜎𝑉𝑉2

𝑘𝑘 ⋅ 𝑃𝑃𝐿𝐿𝐿𝐿

The relation is given by

Where 𝑘𝑘 is the angular coefficient 
given by the linear regression, 
while the intercept is linked to the 
electronic noise and is not trusted

In our case:

𝑚𝑚1 = (2.783 ± 0.005 ⋅ 10−2
𝑉𝑉2

𝑊𝑊 )

𝑞𝑞1 = (1.526 ± 0.005 ⋅ 10−5 𝑉𝑉2)

𝑚𝑚2 = (2.748 ± 0.004 ⋅ 10−2
𝑉𝑉2

𝑊𝑊 )

𝑞𝑞2 = (1.419 ± 0.004 ⋅ 10−5 𝑉𝑉2)



Filtering & Autocorrelation

The electric signals coming from the 
balanced detectors are sampled at 10 GSps
and digitally filtered using a brick-wall 
filter.

We keep a 1.25 GHz window centered 
around 875 MHz to improve the SNR.
The gap is always higher than 9.6 dB

Filtering in the spectral domain induces 
correlation in the time domain, as 
expected from Wiener-Khinchin

Correlation is removed, downsampling
at 1.25 GSps, matching the first zero of 
the autocorrelation



Finite resolution POVM

Every practical Heterodyne POVM has a finite resolution:

�Π 𝑚𝑚,𝑚𝑚
𝛿𝛿 = ∫𝑚𝑚𝛿𝛿𝑞𝑞

𝑚𝑚+1 𝛿𝛿𝑞𝑞 𝑑𝑑𝑅𝑅𝑑𝑑(𝛼𝛼)∫𝑚𝑚𝛿𝛿𝑝𝑝
𝑚𝑚+1 𝛿𝛿𝑝𝑝 𝑑𝑑𝑑𝑑 𝛼𝛼 �Π𝛼𝛼

𝑃𝑃𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 ℰ = max
{𝑝𝑝 𝛽𝛽 ,𝜏𝜏𝛽𝛽}

�𝑝𝑝(𝛽𝛽) max
𝑥𝑥

Tr Π𝑚𝑚,𝑚𝑚
𝛿𝛿 𝜏𝜏𝛽𝛽 𝑑𝑑𝛽𝛽

Is a well defined probability….
In the limit 𝛿𝛿𝑞𝑞𝛿𝛿𝑝𝑝 → 0 we get the differential quantum min-entropy

ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ = lim
𝛿𝛿𝑞𝑞𝛿𝛿𝑝𝑝→0

[𝐻𝐻𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ + log2(𝛿𝛿𝑞𝑞𝛿𝛿𝑝𝑝)

𝑝𝑝𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔 𝑋𝑋 ℰ = 2−ℎ𝑚𝑚𝑚𝑚𝑚𝑚 𝑋𝑋 ℰ

Which is a probability density function



Guessing Probability

The expression of the guessing probability is equivalent to the one introduced in [1]

Intuitively, the states �̂�𝜏𝛽𝛽 can be seen as the reduced post-
measurement states that Eve sends to Alice after having applied her 
POVM �𝐸𝐸𝛽𝛽 on the bipartite state  

�̂�𝜏𝛽𝛽 =
TrE 1𝐴𝐴 ⊗ �𝐸𝐸𝛽𝛽 𝜌𝜌𝐴𝐴𝐴𝐴
Tr 1𝐴𝐴 ⊗ �𝐸𝐸𝛽𝛽 𝜌𝜌𝐴𝐴𝐴𝐴

Pguess X ℰ = max
�𝐴𝐴𝛽𝛽

�
𝑥𝑥

𝑑𝑑

𝑃𝑃𝑋𝑋 𝑥𝑥 Tr �𝐸𝐸𝛽𝛽 𝜌𝜌𝑥𝑥𝐴𝐴

[1] R. Konig et al, IEEE Transactions on Information theory 55.9 (2009)



Side-Information

Trusted model Eve controls the source

They have the same output statistics, and Alice cannot distinguish 
between the two

The privacy of the random numbers is completely compromised!
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